Resumo
Introdução: O microquimerismo feto-maternal é caracterizado pela troca bidirecional de células entre a mãe e o feto durante a gestação. O microquimerismo fetal refere-se à população de células de origem fetal que residem no organismo materno, onde já foram observadas atuando de diversas formas, como por exemplo, no reparo tecidual cutâneo. Objetivo: Revisar a disponibilidade de evidências científicas na literatura sobre a atuação de células de origem fetal no processo de cicatrização cutânea materna, e seus benefícios e malefícios para a restituição e manutenção da homeostase da pele. Material e métodos: A partir do acrônimo PICO, foi realizada uma revisão integrativa de literatura utilizando o método PRISMA para busca de literatura pelos descritores e mesh terms relacionados à microquimerismo e cicatrização cutânea. Resultados: Foram encontrados 57 registros de artigos julgados como relevantes para este trabalho nas duas plataformas utilizadas, sendo 41 deles encontrados no PubMed e 16 no Google Scholar. Após pré-seleção pela leitura dos títulos e resumos, 50 artigos foram excluídos pela aplicação dos critérios de elegibilidade, e 16 artigos tratavam individualmente de microquimerismo ou cicatrização cutânea. Por fim, 7 artigos foram selecionados para a leitura na íntegra, sendo que 2 deles foram descartados por não apresentarem informações suficientes para revisão. Os artigos revisados (n=5) apresentaram dados sobre atividades proliferativas e de diferenciação fenotípica das células microquiméricas em resposta à lesão materna, e apenas 1 artigo ofereceu bases para aplicações em medicina regenerativa. Conclusão: Apesar da participação ativa das células microquiméricas feto-maternas na cicatrização cutânea materna, e do potencial terapêutico, ainda são necessários mais estudos experimentais para compreender sua atuação para futuras aplicações em terapia regenerativa.
Referências
BARCELLOS, K. S. A.; ANDRADE, L. E. C. Microquimerismo fetal-materno nas doenças reumáticas auto-imunes. Revista Brasileira de Reumatologia, 44(1): 53-61, 2004.
BIANCHI, D. W. et al. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proceedings of the National Academy of Sciences of the United States of America PMID: 8570620 PMCID: PMC40117, v. 93, n. 2, p. 705–708 , 23 jan. 1996.
BIANCHI, D. W.; KHOSROTEHRANI, K.; WAY, S. S.; MACKENZIE, T. C.; BAJEMA,I.; O’DONOGHUE, K. Forever Connected: The Lifelong Biological Consequences of Fetomaternal and Maternofetal Microchimerism, Clinical Chemistry, 67(2): 351-362, 2021.
BILLINGHAM, R.E.; BRENT, L.; MEDAWAR, P.B. Actively Acquired Tolerance of Foreign Cells. Nature. 1953;172:603–606.
BODDY, A.M.;FORTUNATO, A.; SAYRES, M. W.; AKTIPIS, A. Fetal microchimerism and maternal health: A review and evolutionary analysis of cooperation and conflict beyond the womb. BioEssays, 37(10): 1106-1118, 2015.
CAMPAGNOLI C.; ROBERTS I.A.; KUMAR S.; BENNETT P.R.; BELLATUONO I.;FISK N.M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396- 2402, 2001
CARMELIET, P. Angiogenesis in health and disease. Nature Medicine, 9(6): 653–660, 2003.
CASTELA, M.; NASSAR, D.; SBEIH, M.; JACHIET, M.; WANG, Z.; ARACTINGI, S. Ccl2/Ccr2 signalling recruits a distinct fetal microchimeric population that rescues delayed maternal wound healing. Nature Communications, 8: 15463, 2017.
CHODOROWSKA, G.; ROGUŚ-SKORUPSKA, D. Cutaneous wound healing. Annales Universitatis Mariae Curie-Sklodowska. Sectio D: Medicina, 59(2): 403–407, 2004.
DAVIES, D.; DEMIRHAN, O. Pregnancy-related microchimerism unknown pathophysiological effects. Frontiers in Women’s Health, 4: 1-4, 2019.
DAWE, G. S.; TAN, X. W.; XIAO, Z. C. Cell migration from baby to mother. Cell Adhesion & Migration, 1(1): 19–27, 2007.
DUTTA, P.; DART, M. L.; SCHUMACHER, S. M.; BURLINGHAM, W. J. Fetal microchimerism persists at high levels in c-kit stem cells in sensitized mothers. Chimerism, 1(2): 51–55, 2010.
ERICKSON, J. R.; ECHEVERRI, K. Learning From Regeneration Research Organisms: The Circuitous Road To Scar Free Wound Healing. Developmental Biology, 433(2): 144–154, 2018.
FUJIKI, Y.; JOHNSON, K. L.; TIGHIOUART, H.; PETER, I.; BIANCHI, D. W. Fetomaternal trafficking in the mouse increases as delivery approaches and is highest in the maternal lung. Biology of Reproduction, 79(5): 841–848, 2008.
GAMMILL, H. S.; HARRINGTON, W. E. Microchimerism: Defining and redefining the prepregnancy context - A review. Placenta, 60: 130–133, 2017.
GAMMILL, H. S.; NELSON, J. L. Naturally acquire microchimerism. The International Journal of Developmental Biology, 54(2-3): 531–543, 2010.
GARTNER, L. P.; HIATT, J. L. Tratado de Histologia em cores. 3.ed. Rio de Janeiro: Elsevier, 2017, 576p.
GRAHAM, C. D.; SHIEH, H. F.; BRAZZO, J. A.; 3RD, ZURAKOWSKI, D.; FAUZA, D. O. Donor mesenchymal stem cells home to maternal wounds after transamniotic stem cell therapy (TRASCET) in a rodent model. Journal of Pediatric Surgery, 52(6): 1006–1009, 2017.
GREAVES, N. S.; ASHCROFT, K. J.; BAGUNEID, M.; BAYAT, A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of Dermatological Science, 72(3): 206–217, 2013.
GUETTIER, C.; SEBAGH, M.; BUARD, J.; FENEUX, D.; ORTIN-SERRANO, M.; GIGOU, M.; TRICOTTET, V.; REYNÈS, M.; SAMUEL, D.; FÉRAY, C. Male cell microchimerism in normal and diseased female livers from fetal life to adulthood. Hepatology, 42: 35-43, 2005.
HALTEREN, A. G. van.; JANKOWSKA-GAN, E.; JOOSTEN, A.; BLOKLAND, E.; POOL, J.; BRAND, A.; BURLINGHAM, W. J.; GOULMY, E. Naturally acquired tolerance and sensitization to minor histocompatibility antigens in healthy family members. Blood, 114(11): 2263–2272, 2009.
HUU, N.; TOAN; PRESTON, T. R. Evaluation of uncultivated vegetables for pigs kept in upland households. Livest. Res. Rural Dev., 19 (10):150, 2007.
HUU, S. N., OSTER, M., AVRIL, M.F. Fetal Microchimeric Cells Participate in Tumour Angiogenesis in Melanomas Occurring during Pregnancy. Am J Pathol, 174: 630–637, 2009.
ICHINOHE, T. Long-term feto-maternal microchimerism revisited: Microchimerism and Tolerance In Hematopoietic Stem Cell Transplantation. Chimerism, 1(1): 39–43, 2010.
ISAAC, C.; LADEIRA, P. R. S. de; RÊGO, F. M. P. do; ALDUNATE, J. C. B.; FERREIRA, M. C. Processo de cura das feridas: cicatrização fisiológica. Comunicação & Educação, 89(3-4): 125-131, 2010.
ISHIDA, T.; KURATA, T.; Okada K, WADA, T.; A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol. 59:365-86. 2008
JOHNSON, K. L.; TAO, K.; STROH, H.; KALLENBACH, L.; PETER, I.; RICHEY, L.; RUST, D.; BIANCHI, D. W. Increased fetal cell trafficking in murine lung following complete pregnancy loss from exposure to lipopolysaccharide. Fertility and Sterility, 93(5): 1718–1721, 2010.
KARA, R. J.; BOLLI P.; KARAKIKES, I.; MATSUNAGA, I.; TRIPODI, J.; TANWEER, O.; ALTMAN, P.; SHACHTER, N. S.; NAKANO, A.; NAJFELD, V.; CHAUDHRY, H. W. Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circulation Research, 110(1): 82–93, 2012.
KHOSROTEHRANI, K.; BIANCHI, D. W. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. Journal of Cell Science, 118(8): 1559–1563, 2004.
KHOSROTEHRANI, K.; MERY, L.; ARACTINGI, S.; BIANCHI, D. W.; JOHNSON, K. L. Absence of fetal cell microchimerism in cutaneous lesions of lupus erythematosus. Annals of the rheumatic diseases, 64(1): 159–160, 2005.
KOLIALEXI, A.; TSANGARIS, G.T.; ANTSAKLIS, A.; MAVROUA, A. Rapid Clearance of Fetal Cells from Maternal Circulation after Delivery. Annals of the New York Academy of Sciences, 1022: 113-118, 2004.
KOOPMANS, M.; KREMER HOVINGA, I. C.; BAELDE, H. J.; HARVEY, M. S.; HEER, E. der.; BRUIJN, J. A.; BAJEMA, I. M. Chimerism occurs in thyroid, lung, skin and lymph nodes of women with sons. Journal Of Reproductive Immunology, 78(1): 68–75, 2008.
KUMAR, V.; ABBAS, A. K.; FAUSTO, N.; ASTER, J. C. Robbins & Cotran Patologia: Bases Patológicas das Doenças. Elsevier, Rio de Janeiro, 2017. 1458p.
LAPAIRE, OLAV et al. Impact of fetal-maternal microchimerism on women’s health--a review. The Journal of Maternal-Fetal & Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, The Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians PMID: 17437192, v. 20, n. 1, p. 1–5 , jan. 2007.
LAUREANO, A.; RODRIGUES, A. M. Wound Healing. Journal of the Portuguese Society of Dermatology and Venereology, 69(3), p. 355, 2011.
LI, J.; CHEN, J.; KIRSNER, R. Pathophysiology of acute wound healing. Clinics in Dermatology, 25(1): 9–18, 2007.
LO, Y. M.; TEIN, M. S.; LAU, T. K.; HAINES, C. J.; LEUNG, T. N.; POON, P. M.; WAINSCOAT, J. S.; JOHNSON, P. J.; CHANG, A. M.; HJELM, N. M. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. American Journal Of Human Genetics, 62(4): 768–775, 1998.
LORENZ, H. P.; LONGAKER, M. T.; PERKOCHA, L. A.; JENNINGS, R.W.; HARRISON, M.R.; ADZICK, N.S. Scarless wound repair: a human fetal skin model. Development, 114(1): 253–259, 1992.
MAHMOOD, U.; O’DONOGHUE, K. Microchimeric fetal cells play a role in maternal wound healing after pregnancy. Chimerism, 5(2): 40–52, 2014.
MALONEY, S.; SMITH, A.; FURST, D. E.; MYERSON, D.; RUPERT, K.; EVANS, P. C.; NELSON, J. L. Microchimerism of maternal origin persists into adult life. The Journal Of Clinical Investigation, 104(1): 41–47, 1999.
MONAVARIAN, M.; KADER, S.; MOEINZADEH, S.; JABBARI, E. Regenerative Scar-Free Skin Wound Healing. Tissue Engineering. Part B, Reviews, 25(4): 294–311, 2019.
MOORE, A. L.; MARSHALL, C. D.; BARNES, L. A.; MURPHY, M. P.; RANSOM, R. C.; LONGAKER, M. T. Scarless wound healing: Transitioning from fetal research to regenerative healing. Wiley interdisciplinary reviews. Developmental biology, 7(2): 10.1002/wdev.309, 2018.
NASSAR, D.; DROITCOURT, C.; MATHIEU-D’ARGENT, E.; KIM, M.J.; KHOSROTEHRANI, K.; ARACTINGI, S. Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing. The FASEB Journal, 26: 149-157, 2012.
NASSAR, D.; KHOSROTEHRANI, K.; ARACTINGI S. Fetal microchimerism in skin wound healing. Chimerism, 3(2): 45-47, 2012.
NELSON J. L. Microchimerism: implications for autoimmune disease. Lupus, 8(5): 370–374, 1999.
NELSON J. L. The otherness of self: microchimerism in health and disease. Trends in Immunology, 33(8): 421–427, 2012.
NELSON, J. L.; FURST, D. E.; MALONEY, S.; GOOLEY, T.; EVANS, P. C.; SMITH, A; BEAN, M. A.; OBER, C.; BIANCHI, D. W. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet, 351(9102): 559–562, 1998.
O’DONOGHUE, K.; CHAN, J.; DE LA FUENTE, J.; KENNEA, N.; SANDISON, A.; ANDERSON, J. R.; ROBERTS, I. A.; FISK, N. M. Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet, 364(9429): 179–182, 2004.
OSADA, Y., KAJIWARA, K., FUSHIMI, T., IRASA, O., HIROKAWA, Y., MATSUNAGA, T., SHIMOMURA, T., WANG, L. & ISHIDA, H. Gels Handbook: The Fundamentals. Vol. 4. Elsevier, Waltham. 2001
PASTAR, I.; STOJADINOVIC, O.; YIN, N. C.; RAMIREZ, H.; NUSBAUM, A. G.; SAWAYA, A.; PATEL, S. B.; KHALID, L.; ISSEROFF, R. R.; TOMIC-CANIC, M. Epithelialization in Wound Healing: A Comprehensive Review. Advances in Wound Care, 3(7): 445–464, 2014.
PETERSON, S. E.; NELSON, J. L.; GUTHRIE, K. A.; GADI, V. K.; AYDELOTTE, T. M.; OYER, D. J.; PRAGER, S. W.; GAMMILL, H. S. Prospective assessment of fetal-maternal cell transfer in miscarriage and pregnancy termination. Human Reproduction, 27(9): 2607–2612, 2012.
PITCHFORD, S. C.; FURZE, R. C.; JONES, C. P.; WENGNER, A. M.; RANKIN, S. M. Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell, 4(1): 62–72, 2009.
REINKE J. M.; SORG, H. Wound Repair and Regeneration. European Surgical Research, 49:35-43, 2012.
RIJNINK, E. C.; PENNING, M. E.; WOLTERBEEK, R.; WILHELMUS, S.; ZANDBERGEN, M.; DUINEN, S. G. von.; SCHUTTE, J.; BRUJIN, J. A.; BAJEMA, I. M. Tissue microchimerism is increased during pregnancy: a human autopsy study. Molecular Human Reproduction, 21(11): 857–864, 2015.
RIPPA, A. L.; KALABUSHEVA, E. P.; VOROTELYAK, E. A. Regeneration of Dermis: Scarring and Cells Involved. Cells, 8(6): 607, 2019.
SEPPANEN, E.; ROY, E.; ELLIS, R.; BOU-GHARIOS, G.; FISK, N. M.; KHOSROTEHRANI, K. Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model. PloS One, 8(5), e62662, 2013.
SHAFIEE, A.; FISK, N. M.; HUTMACHER, D. W.; KHOSROTEHRANI, K.; PATEL, J. Fetal endothelial and mesenchymal progenitors from the human term placenta: potency and clinical potential. Stem Cells Translational Medicine, 4(5): 419–423, 2015.
SHRIVASTAVA, S.; NAIK, R.; SURYAWANSHI, H.; GUPTA, N. Microchimerism: A new concept. Journal of Oral and Maxillofacial Pathology: JOMFP, 23(2): 311, 2019.
SI Y., TSOU CL, CROFT K. & CHARO IF CCR2 medeia o tronco hematopoiético e o tráfego de células progenitoras para locais de inflamação em camundongos . J. Clin. Investir. 120 , 1192–1203, 2010.
SINGER, A. J.; CLARK, R. A. Cutaneous wound healing. The New England Journal of Medicine, 341(10): 738–746, 1999.
TAN, X. W.; LIAO, H.; SUN, L.; OKABE, M.; XIAO, Z. C.; DAWE, G. S. Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier?. Stem Cells, 23(10): 1443–1452, 2005.
TAZIMA M.F.; VICENTE Y.A.; MORIYA T. Biologia da ferida e cicatrização. Medicina Ribeirão Preto. 41(3): 259-64, 2008.
TOLAR, J.; BLAZAR, B. R.; WAGNER, J. E. Concise Review: Transplantation of Human Hematopoietic Cells for Extracellular Matrix Protein Deficiency in Epidermolysis Bullosa. Stem Cells Translational Medicine, 29(6): 900-906, 2011.
VADAKKE-MADATHIL, S.; CHAUDHRY, H. W. Chimerism as the basis for organ repair. Ann N Y Acad Sci, 1487(1): 12-20, 2021.
VERNOCHET, C.; CAUCHETEUX, S. M.; KANELLOPOULOS-LANGEVIN, C. Bi-directional cell trafficking between mother and fetus in mouse placenta. Placenta, 28(7): 639-649, 2007.
ZHOUNG, J. F.; & WEINER, L. P. Role of fetal stem cells in maternal tissue regeneration. Gene Regulation and Systems Biology, 1: 111–115, 2007.