INTEGRATIVE REVIEW ON THE ROLE OF FETAL MICROCHIMERIC CELLS IN THE SKIN HEALING PROCESS
PAPEL DAS CÉLULAS (Português (Brasil))

Keywords

angiogenesis, fetomaternal microchimerism, skin, wound-healing, skin healing, stem cells, tissue repair.

How to Cite

Da Costa Melo Dahiskjaer, A., Stefan de Almeida Ribeiro, R., Afonso Verícimo, M. ., & Porto Amadeu, T. . (2024). INTEGRATIVE REVIEW ON THE ROLE OF FETAL MICROCHIMERIC CELLS IN THE SKIN HEALING PROCESS. Advanced Studies on Health and Nature, 18. https://doi.org/10.51249/easn18.2024.2056

Abstract

Introduction: Microchimerism is characterized by the bidirectional exchange of cells between mother and fetus during pregnancy, which may also originate in processes such as childbirth and abortion. Feto-maternal microchimerism refers to the population of cells of fetal origin residing in the maternal organism, where they have been observed acting in different ways, such as in cutaneous tissue repair. Objectives: To review the availability of scientific evidence in the literature on the role of cells of fetal origin in the maternal skin healing process, and their benefits and harms for the restitution and maintenance of skin homeostasis. Material and methods: Based on the acronym PICO, a integrative literature review was performed using the PRISMA method to search the literature by descriptors and mesh terms related to microchimerism and skin healing. Results: 57 records of articles deemed relevant for this work were found in the two platforms used, 41 of which were found in PubMed and 16 in Google Scholar. After pre-selection by reading the titles and abstracts, 50 articles were excluded by applying the eligibility criteria. 16 articles dealing individually with microchimerism or skin scarring. Finally, 7 articles were selected for full reading, and 2 of them were discarded for not presenting enough information for review. The reviewed articles (n=5) showed proliferative and phenotypic differentiation activities of microchimeric cells in response to maternal injury, and offered a basis for applications in regenerative therapy. Conclusion: Despite the active participation of fetal-maternal microchimeric cells in maternal skin healing, and the therapeutic potential, further experimental studies are needed to understand their role for future applications in regenerative therapy.

https://doi.org/10.51249/easn18.2024.2056
PAPEL DAS CÉLULAS (Português (Brasil))

References

BARCELLOS, K. S. A.; ANDRADE, L. E. C. Microquimerismo fetal-materno nas doenças reumáticas auto-imunes. Revista Brasileira de Reumatologia, 44(1): 53-61, 2004.

BIANCHI, D. W. et al. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proceedings of the National Academy of Sciences of the United States of America PMID: 8570620 PMCID: PMC40117, v. 93, n. 2, p. 705–708 , 23 jan. 1996.

BIANCHI, D. W.; KHOSROTEHRANI, K.; WAY, S. S.; MACKENZIE, T. C.; BAJEMA,I.; O’DONOGHUE, K. Forever Connected: The Lifelong Biological Consequences of Fetomaternal and Maternofetal Microchimerism, Clinical Chemistry, 67(2): 351-362, 2021.

BILLINGHAM, R.E.; BRENT, L.; MEDAWAR, P.B. Actively Acquired Tolerance of Foreign Cells. Nature. 1953;172:603–606.

BODDY, A.M.;FORTUNATO, A.; SAYRES, M. W.; AKTIPIS, A. Fetal microchimerism and maternal health: A review and evolutionary analysis of cooperation and conflict beyond the womb. BioEssays, 37(10): 1106-1118, 2015.

CAMPAGNOLI C.; ROBERTS I.A.; KUMAR S.; BENNETT P.R.; BELLATUONO I.;FISK N.M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396- 2402, 2001

CARMELIET, P. Angiogenesis in health and disease. Nature Medicine, 9(6): 653–660, 2003.

CASTELA, M.; NASSAR, D.; SBEIH, M.; JACHIET, M.; WANG, Z.; ARACTINGI, S. Ccl2/Ccr2 signalling recruits a distinct fetal microchimeric population that rescues delayed maternal wound healing. Nature Communications, 8: 15463, 2017.

CHODOROWSKA, G.; ROGUŚ-SKORUPSKA, D. Cutaneous wound healing. Annales Universitatis Mariae Curie-Sklodowska. Sectio D: Medicina, 59(2): 403–407, 2004.

DAVIES, D.; DEMIRHAN, O. Pregnancy-related microchimerism unknown pathophysiological effects. Frontiers in Women’s Health, 4: 1-4, 2019.

DAWE, G. S.; TAN, X. W.; XIAO, Z. C. Cell migration from baby to mother. Cell Adhesion & Migration, 1(1): 19–27, 2007.

DUTTA, P.; DART, M. L.; SCHUMACHER, S. M.; BURLINGHAM, W. J. Fetal microchimerism persists at high levels in c-kit stem cells in sensitized mothers. Chimerism, 1(2): 51–55, 2010.

ERICKSON, J. R.; ECHEVERRI, K. Learning From Regeneration Research Organisms: The Circuitous Road To Scar Free Wound Healing. Developmental Biology, 433(2): 144–154, 2018.

FUJIKI, Y.; JOHNSON, K. L.; TIGHIOUART, H.; PETER, I.; BIANCHI, D. W. Fetomaternal trafficking in the mouse increases as delivery approaches and is highest in the maternal lung. Biology of Reproduction, 79(5): 841–848, 2008.

GAMMILL, H. S.; HARRINGTON, W. E. Microchimerism: Defining and redefining the prepregnancy context - A review. Placenta, 60: 130–133, 2017.

GAMMILL, H. S.; NELSON, J. L. Naturally acquire microchimerism. The International Journal of Developmental Biology, 54(2-3): 531–543, 2010.

GARTNER, L. P.; HIATT, J. L. Tratado de Histologia em cores. 3.ed. Rio de Janeiro: Elsevier, 2017, 576p.

GRAHAM, C. D.; SHIEH, H. F.; BRAZZO, J. A.; 3RD, ZURAKOWSKI, D.; FAUZA, D. O. Donor mesenchymal stem cells home to maternal wounds after transamniotic stem cell therapy (TRASCET) in a rodent model. Journal of Pediatric Surgery, 52(6): 1006–1009, 2017.

GREAVES, N. S.; ASHCROFT, K. J.; BAGUNEID, M.; BAYAT, A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of Dermatological Science, 72(3): 206–217, 2013.

GUETTIER, C.; SEBAGH, M.; BUARD, J.; FENEUX, D.; ORTIN-SERRANO, M.; GIGOU, M.; TRICOTTET, V.; REYNÈS, M.; SAMUEL, D.; FÉRAY, C. Male cell microchimerism in normal and diseased female livers from fetal life to adulthood. Hepatology, 42: 35-43, 2005.

HALTEREN, A. G. van.; JANKOWSKA-GAN, E.; JOOSTEN, A.; BLOKLAND, E.; POOL, J.; BRAND, A.; BURLINGHAM, W. J.; GOULMY, E. Naturally acquired tolerance and sensitization to minor histocompatibility antigens in healthy family members. Blood, 114(11): 2263–2272, 2009.

HUU, N.; TOAN; PRESTON, T. R. Evaluation of uncultivated vegetables for pigs kept in upland households. Livest. Res. Rural Dev., 19 (10):150, 2007.

HUU, S. N., OSTER, M., AVRIL, M.F. Fetal Microchimeric Cells Participate in Tumour Angiogenesis in Melanomas Occurring during Pregnancy. Am J Pathol, 174: 630–637, 2009.

ICHINOHE, T. Long-term feto-maternal microchimerism revisited: Microchimerism and Tolerance In Hematopoietic Stem Cell Transplantation. Chimerism, 1(1): 39–43, 2010.

ISAAC, C.; LADEIRA, P. R. S. de; RÊGO, F. M. P. do; ALDUNATE, J. C. B.; FERREIRA, M. C. Processo de cura das feridas: cicatrização fisiológica. Comunicação & Educação, 89(3-4): 125-131, 2010.

ISHIDA, T.; KURATA, T.; Okada K, WADA, T.; A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol. 59:365-86. 2008

JOHNSON, K. L.; TAO, K.; STROH, H.; KALLENBACH, L.; PETER, I.; RICHEY, L.; RUST, D.; BIANCHI, D. W. Increased fetal cell trafficking in murine lung following complete pregnancy loss from exposure to lipopolysaccharide. Fertility and Sterility, 93(5): 1718–1721, 2010.

KARA, R. J.; BOLLI P.; KARAKIKES, I.; MATSUNAGA, I.; TRIPODI, J.; TANWEER, O.; ALTMAN, P.; SHACHTER, N. S.; NAKANO, A.; NAJFELD, V.; CHAUDHRY, H. W. Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circulation Research, 110(1): 82–93, 2012.

KHOSROTEHRANI, K.; BIANCHI, D. W. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. Journal of Cell Science, 118(8): 1559–1563, 2004.

KHOSROTEHRANI, K.; MERY, L.; ARACTINGI, S.; BIANCHI, D. W.; JOHNSON, K. L. Absence of fetal cell microchimerism in cutaneous lesions of lupus erythematosus. Annals of the rheumatic diseases, 64(1): 159–160, 2005.

KOLIALEXI, A.; TSANGARIS, G.T.; ANTSAKLIS, A.; MAVROUA, A. Rapid Clearance of Fetal Cells from Maternal Circulation after Delivery. Annals of the New York Academy of Sciences, 1022: 113-118, 2004.

KOOPMANS, M.; KREMER HOVINGA, I. C.; BAELDE, H. J.; HARVEY, M. S.; HEER, E. der.; BRUIJN, J. A.; BAJEMA, I. M. Chimerism occurs in thyroid, lung, skin and lymph nodes of women with sons. Journal Of Reproductive Immunology, 78(1): 68–75, 2008.

KUMAR, V.; ABBAS, A. K.; FAUSTO, N.; ASTER, J. C. Robbins & Cotran Patologia: Bases Patológicas das Doenças. Elsevier, Rio de Janeiro, 2017. 1458p.

LAPAIRE, OLAV et al. Impact of fetal-maternal microchimerism on women’s health--a review. The Journal of Maternal-Fetal & Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, The Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians PMID: 17437192, v. 20, n. 1, p. 1–5 , jan. 2007.

LAUREANO, A.; RODRIGUES, A. M. Wound Healing. Journal of the Portuguese Society of Dermatology and Venereology, 69(3), p. 355, 2011.

LI, J.; CHEN, J.; KIRSNER, R. Pathophysiology of acute wound healing. Clinics in Dermatology, 25(1): 9–18, 2007.

LO, Y. M.; TEIN, M. S.; LAU, T. K.; HAINES, C. J.; LEUNG, T. N.; POON, P. M.; WAINSCOAT, J. S.; JOHNSON, P. J.; CHANG, A. M.; HJELM, N. M. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. American Journal Of Human Genetics, 62(4): 768–775, 1998.

LORENZ, H. P.; LONGAKER, M. T.; PERKOCHA, L. A.; JENNINGS, R.W.; HARRISON, M.R.; ADZICK, N.S. Scarless wound repair: a human fetal skin model. Development, 114(1): 253–259, 1992.

MAHMOOD, U.; O’DONOGHUE, K. Microchimeric fetal cells play a role in maternal wound healing after pregnancy. Chimerism, 5(2): 40–52, 2014.

MALONEY, S.; SMITH, A.; FURST, D. E.; MYERSON, D.; RUPERT, K.; EVANS, P. C.; NELSON, J. L. Microchimerism of maternal origin persists into adult life. The Journal Of Clinical Investigation, 104(1): 41–47, 1999.

MONAVARIAN, M.; KADER, S.; MOEINZADEH, S.; JABBARI, E. Regenerative Scar-Free Skin Wound Healing. Tissue Engineering. Part B, Reviews, 25(4): 294–311, 2019.

MOORE, A. L.; MARSHALL, C. D.; BARNES, L. A.; MURPHY, M. P.; RANSOM, R. C.; LONGAKER, M. T. Scarless wound healing: Transitioning from fetal research to regenerative healing. Wiley interdisciplinary reviews. Developmental biology, 7(2): 10.1002/wdev.309, 2018.

NASSAR, D.; DROITCOURT, C.; MATHIEU-D’ARGENT, E.; KIM, M.J.; KHOSROTEHRANI, K.; ARACTINGI, S. Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing. The FASEB Journal, 26: 149-157, 2012.

NASSAR, D.; KHOSROTEHRANI, K.; ARACTINGI S. Fetal microchimerism in skin wound healing. Chimerism, 3(2): 45-47, 2012.

NELSON J. L. Microchimerism: implications for autoimmune disease. Lupus, 8(5): 370–374, 1999.

NELSON J. L. The otherness of self: microchimerism in health and disease. Trends in Immunology, 33(8): 421–427, 2012.

NELSON, J. L.; FURST, D. E.; MALONEY, S.; GOOLEY, T.; EVANS, P. C.; SMITH, A; BEAN, M. A.; OBER, C.; BIANCHI, D. W. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet, 351(9102): 559–562, 1998.

O’DONOGHUE, K.; CHAN, J.; DE LA FUENTE, J.; KENNEA, N.; SANDISON, A.; ANDERSON, J. R.; ROBERTS, I. A.; FISK, N. M. Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet, 364(9429): 179–182, 2004.

OSADA, Y., KAJIWARA, K., FUSHIMI, T., IRASA, O., HIROKAWA, Y., MATSUNAGA, T., SHIMOMURA, T., WANG, L. & ISHIDA, H. Gels Handbook: The Fundamentals. Vol. 4. Elsevier, Waltham. 2001

PASTAR, I.; STOJADINOVIC, O.; YIN, N. C.; RAMIREZ, H.; NUSBAUM, A. G.; SAWAYA, A.; PATEL, S. B.; KHALID, L.; ISSEROFF, R. R.; TOMIC-CANIC, M. Epithelialization in Wound Healing: A Comprehensive Review. Advances in Wound Care, 3(7): 445–464, 2014.

PETERSON, S. E.; NELSON, J. L.; GUTHRIE, K. A.; GADI, V. K.; AYDELOTTE, T. M.; OYER, D. J.; PRAGER, S. W.; GAMMILL, H. S. Prospective assessment of fetal-maternal cell transfer in miscarriage and pregnancy termination. Human Reproduction, 27(9): 2607–2612, 2012.

PITCHFORD, S. C.; FURZE, R. C.; JONES, C. P.; WENGNER, A. M.; RANKIN, S. M. Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell, 4(1): 62–72, 2009.

REINKE J. M.; SORG, H. Wound Repair and Regeneration. European Surgical Research, 49:35-43, 2012.

RIJNINK, E. C.; PENNING, M. E.; WOLTERBEEK, R.; WILHELMUS, S.; ZANDBERGEN, M.; DUINEN, S. G. von.; SCHUTTE, J.; BRUJIN, J. A.; BAJEMA, I. M. Tissue microchimerism is increased during pregnancy: a human autopsy study. Molecular Human Reproduction, 21(11): 857–864, 2015.

RIPPA, A. L.; KALABUSHEVA, E. P.; VOROTELYAK, E. A. Regeneration of Dermis: Scarring and Cells Involved. Cells, 8(6): 607, 2019.

SEPPANEN, E.; ROY, E.; ELLIS, R.; BOU-GHARIOS, G.; FISK, N. M.; KHOSROTEHRANI, K. Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model. PloS One, 8(5), e62662, 2013.

SHAFIEE, A.; FISK, N. M.; HUTMACHER, D. W.; KHOSROTEHRANI, K.; PATEL, J. Fetal endothelial and mesenchymal progenitors from the human term placenta: potency and clinical potential. Stem Cells Translational Medicine, 4(5): 419–423, 2015.

SHRIVASTAVA, S.; NAIK, R.; SURYAWANSHI, H.; GUPTA, N. Microchimerism: A new concept. Journal of Oral and Maxillofacial Pathology: JOMFP, 23(2): 311, 2019.

SI Y., TSOU CL, CROFT K. & CHARO IF CCR2 medeia o tronco hematopoiético e o tráfego de células progenitoras para locais de inflamação em camundongos . J. Clin. Investir. 120 , 1192–1203, 2010.

SINGER, A. J.; CLARK, R. A. Cutaneous wound healing. The New England Journal of Medicine, 341(10): 738–746, 1999.

TAN, X. W.; LIAO, H.; SUN, L.; OKABE, M.; XIAO, Z. C.; DAWE, G. S. Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier?. Stem Cells, 23(10): 1443–1452, 2005.

TAZIMA M.F.; VICENTE Y.A.; MORIYA T. Biologia da ferida e cicatrização. Medicina Ribeirão Preto. 41(3): 259-64, 2008.

TOLAR, J.; BLAZAR, B. R.; WAGNER, J. E. Concise Review: Transplantation of Human Hematopoietic Cells for Extracellular Matrix Protein Deficiency in Epidermolysis Bullosa. Stem Cells Translational Medicine, 29(6): 900-906, 2011.

VADAKKE-MADATHIL, S.; CHAUDHRY, H. W. Chimerism as the basis for organ repair. Ann N Y Acad Sci, 1487(1): 12-20, 2021.

VERNOCHET, C.; CAUCHETEUX, S. M.; KANELLOPOULOS-LANGEVIN, C. Bi-directional cell trafficking between mother and fetus in mouse placenta. Placenta, 28(7): 639-649, 2007.

ZHOUNG, J. F.; & WEINER, L. P. Role of fetal stem cells in maternal tissue regeneration. Gene Regulation and Systems Biology, 1: 111–115, 2007.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...