Abstract
Hydraulic systems are widely used in different industries, such as civil construction, aerospace, automotive, oil, among others. The hydraulic fluid or lubricating oil of these systems is an important source of information regarding the state of the machines. In this way, the analysis of lubricating oil proves to be an important and effective tool to monitor the condition of components of hydraulic systems. Since the emergence of predictive maintenance, researchers have been dedicated to developing methods of online monitoring of hydraulic fluids in order to prevent failures, increase safety and reduce maintenance costs. Therefore, the present work sought to carry out a discussion on the importance of monitoring the hydraulic fluid, bringing the main methods of analysis and the most recent advances.
References
“Hydraulic cylinder market,” Acessado em janeiro de 2022. [Online]. Disponível em: https://www.marketsandmarkets.com/Market-Reports/hydrauliccylinders-market- 252743122.html
“Minimizing the risk of hydraulic cylinder contamination,” Agressive Hydraulics, 2020. Acessado em janeiro de 2022. [Online]. Disponível em: https://www.aggressivehydraulics.com/minimizing-the-risk-of-hydraulic-system- contamination/
A. A. Carey and A. J. Hayzen, “The dielectric constant and oil analysis,” Pract. Oil Anal. Mag., vol. 9, pp. 1–5, 2001.
A. Agoston, C. Ötsch, J. Zhuravleva, and B. Jakoby, “An IR-absorption sensor system for the determination of engine oil deterioration,” in Proc. IEEE SENSORS, 2004, pp. 463–466.
A. Villar, A. Gorritxategi, E. Alarcón, and J. Arnaiz, “Low cost on-line sensors for condition monitoring of lubricating oil,” Maintworld, 2012.
B. C. Sharma and O. P. Gandhi, “Performance evaluation and analysis of lubricating oil using parameter profile approach,” Ind. Lubrication Tribol., vol. 60, pp. 131–137, 2008, doi: 10.1108/00368790810871057.
B. Casey, “Defining and maintaining fluid cleanliness for maximum hydraulic component life,” 2011. Acessado em janeiro de 2022. [Online]. Disponível em: http://total- productive-maintenance.com/articles/hydraulic_fluid_ cleanliness.pdf
Brown M. Applying the predictive approach. New Standard Institute; 2003.
C. V. Ossia, K. Hosung, and L. V. Markova, “Utilization of color change in the condition monitoring of synthetic hydraulic oils,” Ind. Lubrication Tribol., vol. 62, pp. 349–355, 2010, doi: 10.1108/00368791011076245.
F. Ng, J. A. Harding, and J. Glass, “Improving hydraulic excavator performance through in line hydraulic oil contamination monitoring,” Mech. Syst. Signal Process., vol. 83, pp. 176–193, 2017, doi: 10.1016/j.ymssp.2016.06.006.
Fioravanti, A., Marani, P., Massarotti, G. P., Lettieri, S., Morandi, S., & Carotta, M. C. (2021). (Ti, Sn) Solid solution-based gas sensors for new monitoring of hydraulic oil degradation. Materials, 14(3), 605.
Frith RH, Scott W (1993) Control of solids contamination in hydraulic systems—an overview. Wear 165(1):69–74. doi:10.1016/ 0043-1648(93)90374-U
Gomes, M. R.; Andrade, M.; Ferraz, F. Apostila de Hidráulica. Centro Federal de Educação Tecnológica da Bahia Unidade de ensino de Santo Amaro, 2008.
Hamilton A, Cleary A, Quail F. Development of a novel wear detection system for wind turbine gearboxes. IEEE Sens J 2014;14:465–73.
HYDAC, “Oil condition sensors,” Acessado em janeiro de 2022. [Online]. Disponível em: https://www.hydac.com/de-en/products/sensors/oilcondition-sensors.html
Islam, T., Yousuf, M., & Nauman, M. (2020). A highly precise cross-capacitive sensor for metal debris detection in insulating oil. Review of Scientific Instruments, 91(2), 025005.
Ji H, Nie SL, Sun HM, Cheng Y, Li YP (2013) Effects of key structural parameters on solid-liquid separation behavior of hydrocyclone separator applied to hydraulic oil purification. P I Mech Eng E-J Pro 227(4):273 – 286. doi: 10.1177/ 0954408912464931
Khan, K., Sohaib, M., Rashid, A., Ali, S., Akbar, H., Basit, A., & Ahmad, T. (2021). Recent trends and challenges in predictive maintenance of aircraft’s engine and hydraulic system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(8), 1-17.
LINSINGEN, I. Fundamentos de Sistemas Hidráulicos. 4. ed. Florianópolis: Editora UFSC, 2013.
Lopes, P. M. L. Manutenção Preditiva em Sistemas Hidráulicos - Sistemas online de monitoramento e controle, Brazilian Technology Symposium, v. 1, 2016.
M. Mauntz, U. Kuipers, and J. Gegner, “New electric online oil condition monitoring sensor—An innovation in early failure detection of industrial gears,” in Proc. Int. Multi- Conf. Eng. Technol. Innov., 2011, pp. 238–242.
Ma J, Su H, Zhao W-l, Liu B (2018) Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning. Complexity 2018
Mobley RK. An introduction to predictive maintenance. USA: ButterworthHeinemann – Elsevier; 2002. ISBN 0-7506-7531-4
Parker, “Oil condition sensor,” Acessado em janeiro de 2022. [Online]. Disponível em: https://www.parker.com/literature/ Hydraulic Filter Division Europe/Websphere Literature/OIL_ CONDITION_SENSOR.pdf
Poley,J., 2012, “The metamorphosis of oil analysis”, Machinery Failure Prevention Technology (MFPT) Conference, Condition Based Maintenance Section 1, Conference Proceedings, Dayton, Ohio, April 24 – 26, 2012.
S. Barber and P. Golbeck, “Wind turbine maintenance & condition monitoring,” World Wind Energy Assoc., Bonn, Germany, 2006.
S. Kumar, P. S. Mukherjee, and N. M. Mishra, “Online condition monitoring of engine oil,” Ind. Lubrication Tribol., vol. 57, pp. 260–267, 2005, doi: 10.1108/00368790510622362.
S. Moon, K. K. Paek, Y. H. Lee, J. K. Kim, S. W. Kim and B. K. Ju, 2006, ―Multiwall carbon nanotube sensor for monitoring engine oil degradation,‖ Electrochemical and Solid-State Letters, Vol. 9, No. 8, pp. H78 - H80.
Shanbhag, V. V., Meyer, T. J., Caspers, L. W., & Schlanbusch, R. (2021). Failure Monitoring and Predictive Maintenance of Hydraulic Cylinder-State-of-the-Art Review. IEEE/ASME Transactions on Mechatronics.
Shi, H., Zhang, H., Ma, L., Rogers, F., Zhao, X., & Zeng, L. (2020). An impedance debris sensor based on a high-gradient magnetic field for high sensitivity and high throughput. IEEE Transactions on Industrial Electronics, 68(6), 5376-5384.
Shi, H., Zhang, H., Wang, W., Zeng, L., Sun, G., & Chen, H. (2019). c. IEEE Sensors Journal, 19(23), 11583-11590.
Smith DS (1985) Contamination control in hydraulic systems. Tribol Int 18(1):55–56. doi:10.1108/eb053058
STEWART, H. L. Pneumática & Hidráulica. 3. ed. Curitiba: Hemus, 1994.
T. Xi, S. Kehne, T. Fujita, A. Epple, and C. Brecher, “Condition monitoring of ball-screw drives based on frequency shift,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 3, pp. 1211–1219, Jun. 2020.
Turner, J. D., & Austin, L. (2003). Electrical techniques for monitoring the condition of lubrication oil. Measurement science and technology, 14(10), 1794.
Z. Tian, “An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring,” Journal of Intelligent Manufacturing, vol. 23, no. 2, pp. 227–237, 2012.
Zebing, M.; Zhao, J.; Xuan, W.; Wang, W.; Luo, J.; Xie, J. Distilling determination of water content in hydraulic oil with a ZnO/glass surface acoustic wave device. Microsyst. Technol. 2017, 23, 1841–1845.
Zhang, H., Shi, H., Li, W., Ma, L., Zhao, X., Xu, Z., ... & Zhang, Y. (2021). A Novel Impedance Micro-Sensor for Metal Debris Monitoring of Hydraulic Oil. Micromachines, 12(2), 150.
Zhang, R. C., Yu, X., Hu, Y. L., Zang, H. J., & Shu, W. (2018). Active control of hydraulic oil contamination to extend the service life of aviation hydraulic system. The International Journal of Advanced Manufacturing Technology, 96(5), 1693-1704.
Zhu, J., Yoon, J. M., He, D., Qu, Y., & Bechhoefer, E. (2013). Lubrication oil condition monitoring and remaining useful life prediction with particle filtering. International Journal of Prognostics and Health Management, 4, 124-138.