Resumo
The Theory of Multiple Intelligences (TIM) addresses the concept of intelligence, in which their work together promotes the integral development of the individual. Despite not having been developed for educational purposes, TIM started to be widely used in this environment, helping in the teaching and learning process of students. The theory covers eight types of intelligences and has a qualitative character. However, studies appear with the intention of quantifying the approach of the Intelligences. Based on this approach, this article aims to quantitatively relate the intelligences to each other and verify how a prediction model reacts to this data set. For this, multiple regression and an artificial neural network (Multilayer Perceptron — MLP) were used. This research, of an applied nature, was carried out with students from the three grades of high school in a state public school in Fortaleza/CE. They answered a questionnaire with 80 questions based on the Multiple Intelligences itinerary developed by Armstrong (2001). A set of eight multiple regressions was created and the presented results show that there were small distortions in some coefficients when compared with the indices of the correlations between the variables. One of the plausible hypotheses is the size of the dataset. On the other hand, the prediction achieved with the MLP proved to be promising in terms of analyzing the development situation of any student. It is intended, in future studies, that the results can be implemented in a chatbot that offers, in a predictive way, prescriptions for the development of intelligences in the school environment.
Referências
ARMSTRONG, T. Inteligências múltiplas na sala de aula. 2. ed. Porto Alegre. Artmed, 2001.
BRAGA, Antonio de P. LUDEMIR, Teresa B. CARVALHO, André Carlos P. Redes neurais artificiais: teoria e aplicações. Rio de Janeiro. LTC. 2007.
CHISLETT, V.; CHAPMAN, A. Multiple intelligences test-based on Howard Gardner’s MI model. Businessballs.com, 2005. Disponível em: <http://www.businessballs.com/freepdfmaterials/free_multiple_intelligences_test_youn-g_people.pdf>. Acesso em: 18 jan 2022.
FERRÁNDIZ, Carmen. PRIETO, María Dolore. BERMEJO, María Rosario.FERRANDO, Mercedes. Fundamentos psicopedagógicos de las inteligencias múltiples. Revista española de pedagogía. Año LXIV. n.º 233, enero -abril 2006, pg. 5-20.
FREITAS, E.; PRODANOV, C. Metodologia do Trabalho Científico: Métodos e técnicas da pesquisa e do trabalho acadêmico. Ed. 2. FEEVALE. Novo Hamburgo. 2013.
GARDNER, H. Estructuras de la Mente: La Teoría de Las Inteligencias Múltiples. Fondo de Cultura Económica LTDA. Bogotá. 1993
GARDNER, H. Inteligências Múltiplas: A teoria na Prática. Porto Alegre. 1995. ArtMed
JAMES, Gareth. WITTEN, Daniela. HASTIE, Trevor. TIBSHIRANI, Robert. An Introduction to Statistical Learning with Applications in R. New York. 2013. Ed. Springer.
Kelleher, John D. Namee, Brian Mac. D’Arcy, Aoife. Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies.The MIT Press. Cambridge, Massachusetts. 2015.
KOSE, U. An Artificial Neural Network Based Software System for Improved Learning Experience. Machine Learning and Applications (ICMLA), 2013 12th International Conference on IEEE, 2013. p. 549-554.
Nascimento, Eduardo de P. L. A utilização de redes neurais artificiais e teoria das inteligências múltiplas no apoio ao ensino. 2017. Dissertação (Mestrado em Ciências da Computação). Programa de Pós-Graduação em Ciência da Computação, do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, 2017. Disponível em http://hdl.handle.net/11449/150537. Acesso em 05 janeiro 2022.
POLLI, M.; SEVEGNANI, J. A.; DOMINGUES, M. J. C. S.; HEIN, N. Análise das inteligências múltiplas dos graduandos do Curso de Administração da Universidade Regional de Blumenau. Revista Eletrônica de Ciência Administrativa, v. 7, n. 1, p. 1-13, 2008.
RODRÍGUES, Ubaldo C. BARBOSA, Carmelina P. ARGOTE, Zuany. P. Escala de habilidades de múltiples inteligencias: normatización y evidencias de validez. Psicología desde el Caribe, 37(1), 18-39. Disponível em http://dx.doi.org/10.14482/psdc.37.1.155.7 . Acesso em 25 jul 2020.
THEOBRALD, Oliver. Machine Learning for Absolute Beginners: A Plain English Introduction. 2nd ed. Scatterplot Press. 2017.